Customize the use of cookies

This website uses cookies to provide more efficient navigation and analyze visitor traffic. You will find detailed information about them below.

Cookies classified as "Necessary" will be stored in your browser, as they are essential for enabling the basic functionalities of the site. We also use third-party cookies aimed at analytics (Google Analytics), which help us analyze how you use this website. You can choose to enable or disable some of these cookies, but doing so may affect your browsing experience.

Always Active

These cookies are required to provide basic functionality of the website and cannot be disabled. They do not store any private or personally identifiable data.

These cookies allow us to understand how visitors interact with the website and provide information related to the number of visits, traffic sources, and bounce rates.

These cookies are used to provide visitors with personalized ads based on the pages they previously visited and to analyze the effectiveness of advertising campaigns. They are usually related to the integration of social media videos on the website.

Date: 01/03/2020.

Publication type: Research article.

Author(s): Iñigo Capellán-Pérez, Ignacio de Blas, Jaime Nieto, Carlos de Castro, Luis J. de Miguel, Óscar Carpintero, Margarita Mediavilla, Luis Fernando Lobejón, Noelia Ferreras-Alonso, Paula Rodrigo, Fernando Frechoso, David Álvarez-Antelo

Keywords: Integrated Assessment Models, Economy & finance, Energy & materials, Sustainable development.

Short description:

A diversity of integrated assessment models (IAMs) coexists due to the different approaches developed to deal with the complex interactions, high uncertainties and knowledge gaps within the environment and human societies. This paper describes the open-source MEDEAS modelling framework, which has been developed with the aim of informing decision-making to achieve the transition to sustainable energy systems with a focus on biophysical, economic, social and technological restrictions and tackling some of the limitations identified in the current IAMs. MEDEAS models include the following relevant characteristics: representation of biophysical constraints to energy availability; modelling of the mineral and energy investments for the energy transition, allowing a dynamic assessment of the potential mineral scarcities and computation of the net energy available to society; consistent representation of climate change damages with climate assessments by natural scientists; integration of detailed sectoral economic structure (input–output analysis) within a system dynamics approach; energy shifts driven by physical scarcity; and a rich set of socioeconomic and environmental impact indicators. The potentialities and novel insights that this framework brings are illustrated by the simulation of four variants of current trends with the MEDEAS-world model: the consideration of alternative plausible assumptions and methods, combined with the feedback-rich structure of the model, reveal dynamics and implications absent in classical models. Our results suggest that the continuation of current trends will drive significant biophysical scarcities and impacts which will most likely derive in regionalization (priority to security concerns and trade barriers), conflict, and ultimately, a severe global crisis which may lead to the collapse of our modern civilization. Despite depicting a much more worrying future than conventional projections of current trends, we however believe it is a more realistic counterfactual scenario that will allow the design of improved alternative sustainable pathways in future work.