Customize the use of cookies

This website uses cookies to provide more efficient navigation and analyze visitor traffic. You will find detailed information about them below.

Cookies classified as "Necessary" will be stored in your browser, as they are essential for enabling the basic functionalities of the site. We also use third-party cookies aimed at analytics (Google Analytics), which help us analyze how you use this website. You can choose to enable or disable some of these cookies, but doing so may affect your browsing experience.

Always Active

These cookies are required to provide basic functionality of the website and cannot be disabled. They do not store any private or personally identifiable data.

These cookies allow us to understand how visitors interact with the website and provide information related to the number of visits, traffic sources, and bounce rates.

These cookies are used to provide visitors with personalized ads based on the pages they previously visited and to analyze the effectiveness of advertising campaigns. They are usually related to the integration of social media videos on the website.

Date: 22/02/2021.

Publication type: Research article.

Author(s): Dirk‑Jan van de Ven, Iñigo Capellan‑Peréz, Iñaki Arto, Ignacio Cazcarro, Carlos de Castro, Pralit Patel, Mikel Gonzalez‑Eguino

Keywords: Integrated assessment models, Energy & materials, Environment.

Short description:

Although the transition to renewable energies will intensify the global competition for land, the potential impacts driven by solar energy remain unexplored. In this work, the potential solar land requirements and related land use change emissions are computed for the EU, India, Japan and South Korea. A novel method is developed within an integrated assessment model which links socioeconomic, energy, land and climate systems. At 25–80% penetration in the electricity mix of those regions by 2050, we find that solar energy may occupy 0.5–5% of total land. The resulting land cover changes, including indirect effects, will likely cause a net release of carbon ranging from 0 to 50 gCO2/kWh, depending on the region, scale of expansion, solar technology efficiency and land management practices in solar parks. Hence, a coordinated planning and regulation of new solar energy infrastructures should be enforced to avoid a significant increase in their life cycle emissions through terrestrial carbon losses.